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Abstract 

Using a dataset that uniquely identifies counterparties to each S&P500 eMini transaction, we 
classify each market participant as high or low frequency, and each transaction, by the speed of the 
traders involved. We investigate empirically the comparative influence of high and low frequency 
traders on the price process, and conversely the influence of the price process on the trading of high 
and low frequency traders. We find that high frequency traders have a particularly high success 
rate on each transaction, measured by the likelihood that the following price change will go in their 
direction as well as by the amount of time they have to wait to realize their gain, when trading 
against low frequency traders. Contrary to common wisdom, we find that high frequency traders’ 
activity does not induce volatility or jumps. In fact, it is their absence that is problematic: volatility 
and jumps are more prevalent in periods when they trade less intensely. Conversely, we find that 
spikes in volatility and jumps cause high frequency traders to trade less intensely, decreasing their 
provision of liquidity. Finally, looking at the market microstructure noise component to the price 
model, we find that higher level of noise generates trading opportunities for high frequency traders 
and lead them to increase their trading activity. 
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1 Introduction 

Since the creation of NASDAQ in 1971 as the first electronic market, a consistent trend in the market-

place has been the increased role played by computers in the trading process (see, e.g., Litzenberger 

et al. (2012) for a history). As late as the mid 1990s, NYSE trading was for the most part taking 

place manually on its floor. While NASDAQ posted and matched orders electronically, its orders 

predominantly came by manual keyboard entry. In the late 1990s, the NYSE and NASDAQ saw 

their duopoly progressively eroded by fully electronic trading networks. As fully electronic means 

became available to access markets, technological developments made possible the implementation of 

high frequency trading algorithms, which analyze market data such as short term momentum or mean 

reversion, historical correlations with recent trades within or across markets, order book imbalance, 

and the predicted price response to electronically interpreted news. Depending upon the types of 

strategies followed, the algorithms make a strategic choice between market and limit orders, may de-

cide to split them across time and/or trading venues, then submit or cancel orders, all without direct 

human intervention and all within a few milliseconds. Regulatory changes during the 2000s, including 

decimalization in 2001 and Reg NMS in 2007, were designed to increase competition among exchanges; 

they proved to be catalysts for the development of high frequency trading. Competition among ex-

changes indeed increased, driven in part by the desire to serve and benefit from the presence of high 

frequency traders (HFTs), who quickly became the largest customers of these for-profit trading venues. 

HFTs thrive on low latency, vying for computer locations colocated with the exchanges’ servers, and 

timely access to information. The competition among exchanges took the form of increasing the speed 

at which they operate, and of providing other benefits afforded exclusively to HFTs, such as flashing 

orders to HFTs before sending them to the public market, providing them private data feeds, various 

colocation services, etc. Even if these benefits are in theory available to everyone willing to pay, they 

are in reality of value only to a small number of firms with the technology and inclination to exploit 

them in real time. Various estimates indicate that over half of all trading volume in US equity and 

futures markets is attributable to HFTs.1 

This paper provides an empirical investigation, using a unique dataset that identifies the traders 

in each transaction, of the comparative influence of high and low frequency traders on the asset price 

process, and conversely of the influence of the price process on the trading of high and low frequency 

traders. The paper contributes to the existing literature in three different ways. First the data 

we use capture all transactions in the E-mini S&P500 futures contract. A large part of the empirical 

1Estimates ranging from 50 to 70% are provided by Biais and Woolley (2011) and Sussman et al. (2009). 
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literature on high-frequency traders analyzes transactions (and/or quotes) referring to a specific venue– 

e.g. NASDAQ, see Brogaard et al. (2014b). It is reasonable to assume that HFTs may trade the same 

asset on more than one market and hence it might be difficult to generalize the behavior of HFTs 

based on the analysis of a single market only.2 A related point is that most of the contributions mainly 

concentrate their analysis on the provision and supply of liquidity by HFTs. While we also look at 

this aspect of HFTs activity in our data, our main focus is on which side of the market HFTs are in 

terms of buying or selling. While the provision of liquidity may pertain more to the functioning of the 

market, our goal is to study the price process itself. In fact, our second contribution is to analyze all 

components of the price process. Finally, one appealing feature of our analysis is that it is completely 

nonparametric, or model-free. None of our conclusions are influenced by a prior hypothesis or a model. 

A semimartingale model for asset prices consists of three components: drift, volatility, and jumps. 

We analyze which change(s) in the components of the price process lead different types of traders to act, 

and conversely analyze the influence of these traders’ propensity to trade on these three components. 

Regarding the drift, we find that HFTs are not directional traders. However, they enjoy a high success 

rate on each transaction, measured both by the likelihood that the next price change following their 

transaction will go in their direction (e.g., an uptick following a buy) as well as by the amount of 

time they have to wait to realize their gain (shorter).3 In particular, we document that HFTs do not 

win just 51% of the time and rely simply on the law of large numbers. Their winning percentage is 

substantially higher when they trade against low frequency traders (LFTs) but not when they trade 

between one another. They also display an uncanny ability to avoid each other as counterparties 

despite the anonymity of orders. Contrary to popular perception, we do not find that the presence 

of HFTs induce volatility or price jumps. In fact, we find the opposite: high volatility and jumps 

tend to follow periods where HFTs’ share of trading decreases.4 In other words, it is their absence 

that is problematic: HFTs induce volatility and price jumps when they choose to be less present in 

the market. Conversely, we study whether increases in volatility, and most importantly, jumps, cause 

HFTs to withdraw. There, we find that spikes in volatility and jumps cause HFTs to trade less 

intensely, which is self-reinforcing as the decreased provision of liquidity leads to more volatility. This 

specific question has important consequences for any potential regulation of HFTs, particularly as they 

have largely replaced the NYSE specialists and NASDAQ market makers of yesteryear: in exchange 

for the benefits they enjoy, should high frequency market makers be required to maintain a “fair and 

2A similar dataset has been previously adopted by Kirilenko et al. (2017). Their analysis concentrates on the May 6, 
2010 flash crash. Our analysis is much broader in scope and does not concentrate on a single, yet important, event. 

3Similar results for NASDAQ are reported in Brogaard et al. (2014b). Our approach is more granular, as it will be 
explained below. 

4Chaboud et al. (2014) and Hasbrouck and Saar (2013) find weak evidence that HFTs activity reduces volatility. 
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orderly market” and act in the interests of the marketplace at large in case of a disruption, even at 

a cost? This debate has taken a renewed importance following the “flash crash” of May 6, 2010, 

and the evidence uncovered in the aftermath of very many, although less striking and less reported, 

mini-crashes in numerous markets. When we add a market microstructure noise component to the 

price model in the form of an additive error, the noise generates short term autocorrelation of returns. 

We find that higher levels of noise are followed by higher trading activity by HFTs, consistent with 

the noise generating further trading opportunities; conversely, higher HFT activity does not lead to a 

change in the level of the noise. 

The paper is organized as follows. Section 2 provides a brief review of the rapidly evolving literature 

on high frequency trading. Section 3 describes the data we use in the paper and the process by which 

we identify the HFTs on the basis of their frequency of trading, number of trades, and (lack of) carried 

inventory. Section 4 studies how HFTs trade as a function of the characteristics of the price process, 

compared to LFTs. Section 5 studies the reverse causality: we examine how the price process responds 

to trades that involve HFTs as opposed to LFTs. Section 6 concludes. 

Literature Review 

HFTs are at the center of many policy debates and controversies. As the latest type of market 

makers to enter the fray, are they benevolent providers of the liquidity and price discovery that the 

marketplace needs, or are they potentially destabilizing the market, increasing systemic risk, and 

creating a non-level playing field? 

The empirical literature generally supports the view that HFTs play a role that is, on balance, ben-

eficial for market quality, measured using standard metrics involving combinations of bid-ask spreads, 

liquidity, and transitory price impacts. Hendershott et al. (2011) find that HFTs improve liquidity and 

enhance the informativeness of quotes, using the automation of quote dissemination by the NYSE in 

2003 as an exogenous change in market structure. They find that for large stocks in particular, HFTs 

narrow spreads, reduce adverse selection, and reduce trade-related price discovery. Biais et al. (2016), 

using data from Euronext and the French financial markets regulator (AMF), find that HFTs provide 

liquidity by leaving limit orders in the book thus helping the market absorb shocks. Hasbrouck and 

Saar (2013), using order-level NASDAQ data, show that increased HFTs’ activity is associated with 

lower posted and effective spreads, increased depth, and lower short-term volatility. They nevertheless 

show that HFTs exhibit high turnover and high rates of order cancellation (“fleeting orders”) relative 

to actual trade execution. Jovanovic and Menkveld (2010) show that the entry of HFTs in a market 
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reduces bid-ask spreads. Menkveld (2013) provides evidence that HFTs usefully act as market makers, 

particularly in new markets. Chaboud et al. (2014) establish that an increase in algorithmic trading 

is associated with a decrease in volatility levels in the foreign exchange market. Similarly, Hagströmer 

and Nordèn (2013) provide evidence that HFTs trading activity mitigates price volatility for stocks 

traded at the NASDAQ OMX Stockholm exchange. 

Our results also indicate that HFTs trading activity does not increase volatility levels. Our ap-

proach, though, is different. Most of the literature looks at contemporaneous relationship between 

volatility and trading activity within a regression framework. Instead, we condition on past informa-

tion. In particular, we condition trading activity on past volatility levels and, vice versa, volatility on 

past trading activity. Our approach allows us to study how HFTs respond to a period of high (low) 

volatility as well as how volatility behaves following periods of high (low) trading activity of HFTs. 

Brogaard et al. (2014b) find that HFTs enhance price discovery and market efficiency on NASDAQ, 

with prices reflecting information more quickly. Decomposing price movements into permanent (inter-

preted as information-based) and temporary (interpreted as microstructure or pricing errors-based) 

components, they find that HFTs trade in the direction of permanent price changes and in the oppo-

site direction of transitory pricing errors. We complement these results by documenting that HFTs 

trade more intensely when market microstructure noise is high than when the noise is lower. Brogaard 

et al. (2016) use Canadian regulatory data to study the contribution of HFTs’ activity (trades and 

limit orders) to price discovery and find that HFTs are responsible for 60-80 percent of price discovery, 

mainly through their limit orders.5 

Of course, these market quality statistics are typically assessed over relatively long horizons, of 

months or years, and as a result, are not designed to account for the temporary dislocations that appear 

in markets in the form of transitory mini-crashes that may last a few seconds: these are smoothed out 

over time and will not be reflected in longer-run measures. Recently Brogaard et al. (2018) analyze 

the provision of liquidity during extreme price movements. They find that HFTs provide liquidity 

during extreme events but only when these extreme events refer to single stocks. We do not examine 

specific episodes of extreme price movements and we adopt a broader definition of jumps: any price 

change exceeding three times the standard deviation. We find that HFTs shy away when there are 

jumps. 

Other evidence suggests that HFTs can play a less benevolent role in the marketplace. Huh (2016) 

5Also on NASDAQ, Brogaard (2011) finds that HFTs tend to trade more when systematic (index) volatility is higher 
but less when idiosyncratic (stock-specific) volatility is higher. Saliba (2019) uses AMF regulatory data and identifies 
three categories of market participants in the order flow: HFTs, agency and proprietary participants. She finds that 
HFTs aggressive orders contain more information than those of agency and proprietary participants. 
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distinguishes between liquidity-taking HFTs (those submitting market orders) and liquidity-providing 

HFTs (those submitting limit orders), and shows that the information asymmetry induced by liquidity-

taking HFTs’ use of machine-readable information reduces the supply of liquidity by HFTs. This effect 

is particularly strong when markets are volatile.6 Brogaard (2011) and Hirschey (2011) find that HFTs 

on NASDAQ tend to predict future order flow. To the extent that the informational advantage of 

HFTs often takes the form of advance knowledge of order book imbalances or other traders’ future 

actions, the case for benign and useful price discovery role is weaker (see Jarrow and Protter (2012) 

for a theoretical argument). 

The ability to place large amounts of order, and cancel them before slower traders can take ad-

vantage of them, is an inherent part of most HFTs’ strategies. Some strategies followed by HFTs 

may come close to market manipulation (see Biais and Woolley (2011)). Some HFTs “stuff” the order 

book by submitting a very large number of orders which they have no intention of executing, but have 

the effect of limiting for a short time the access to the market for other, slower, traders. “Smoking” 

consists in posting attractive orders to attract slow traders, orders that the HFT has no intention 

of executing. The HFT then rapidly cancels these orders, leaving in place only those to be executed 

profitably against the incoming flow of slow traders’ market orders who reacted to the initial HFTs’ 

inducement. “Spoofing” involves an HFT disguising its trading intention by stuffing the order book on 

the side opposite to its true trading direction, not at the best price so that they do not get executed 

against market orders. Slower traders will then react to this imbalance by hoping to get ahead of 

the HFT-induced imbalance, providing liquidity for the HFT’s desired trade. Cartea et al. (2019) 

model trading strategies of an investor spoofing the limit order book. Of course, it is possible for a 

high rate of cancellation on the part of HFTs to simply reflect “market making,” that is, providing 

liquidity to other traders by quoting two-sided prices, but rapidly revising their quotes as market 

conditions dictate to avoid being executed against in unfavorable circumstances. Hens et al. (2018) 

study front-running by HFTs and find that this strategy does not affect market quality.7 

HFTs typically generate profits out of a large number of small size, small gain trades, all without 

accumulating any significant inventory. As a result of the small trade sizes they often have little 

6Zhang (2010), using quarterly data, finds that HFTs activity is positively correlated with stock price volatility and 
negatively linked to market ability to incorporate firm’s fundamental news into asset prices. 

7Aı̈t-Sahalia and Sağlam (2016b) and Aı̈t-Sahalia and Sağlam (2016a) propose a model where liquidity is provided 
by HFTs who are both faster and better informed than their counterparties. Their model predicts that, left to their 
own devices, market makers should be expected to provide more liquidity as they get faster, but then shy away from 
it as volatility increases. In fact, Raman et al. (2014), for crude oil futures, and Brogaard et al. (2018), for NASDAQ 
stocks, document that provision of liquidity by HFTs diminishes when volatility is high. Breckenfelder (2019) finds 
that increasing competition among HFTs increases speculative trading by HFTs and, as consequence, market liquidity 
deteriorates and volatility increases. Menkveld and Zoican (2017) and Budish et al. (2015) also find that an increase in 
HFTs speculative trading deteriorates market quality. 
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price impact, and their small inventories mean that their trading risk is relatively limited (see Baron 

et al. (2019)). On the other hand, their strategies are often correlated among themselves (see Chaboud 

et al. (2014)). Operational risk is a concern, including software errors, rogue trades, or poorly executed 

algorithms: for example, Knight Capital in August 2012 and the Flash Crash of May 2010, which was a 

$4 billion sell order sent without a price limit. Another concern would be a liquidity or other common 

shocks affecting many HFTs, which are typically all proprietary trading firms relying on low capital 

levels. The large quantity of transactions involving HFTs, their large number of counterparties in 

futures markets, with different settlement and clearing, etc., could potentially trigger a cascade of 

defaults, leading to systemic problems not unlike those experienced without HFTs’ involvement in the 

Fall of 2008.8 

Many empirical studies of HFTs relied on the “NASDAQ HFT dataset” which covered 120 US 

stocks over 2008-2009 and identified 26 HFT firms as proprietary traders with colocated facilities, 

high turnover, and high rates of cancellations relative to executions. The profitability of HFTs taken 

collectively has been estimated by Brogaard (2011) at about $3 billion (gross of any operational 

expenses) over those two years. Using similar data as this paper, Baron et al. (2012) estimate the 

gross profitability of HFT firms in one E-mini S&P 500 futures contract during one month at about 

$30 million. Various evidence points towards a recent decline of HFT profitability in 2012,9 due in 

part to HFTs becoming victims of their own success, the increased competition from other HFTs, the 

costs of the technological arms race, and declining trading volume after a peak in 2009. 

Most empirical studies in the literature, with the notable exception of Easley et al. (2011), Kirilenko 

et al. (2017), and Brogaard et al. (2018) characterize the behavior of HFTs in typical times and 

market environments. In this paper, we do not focus on specific episodes of market crises, but rather 

decompose the asset price process into volatility and jump components, as is natural in the context 

of semimartingale price models (see, e.g., Aı̈t-Sahalia and Jacod (2012)). We analyze HFTs’ trading 

behavior conditional on small (volatility) and large (jump) price movements, and in the other direction 

analyze their impact on price volatility and jumps. The latter results address the question of the 

potential for HFTs to destabilize markets in which they operate and generate abnormal volatility and 

jumps. To this end, we consider two distinct samples: one characterized by low volatility levels and 

the other by high volatility levels. Moreover, our model free approach provides a unique perspective 

8Other related contributions include Brogaard et al. (2015), who investigate how speed affects market liquidity, 
Brogaard et al. (2014a), who study the impact of HFTs on execution costs of institutional traders, and Brogaard et al. 
(2017), who analyze the effect of the short sale-ban of September 2008 on HFTs provision of liquidity. Li et al. (2019) 
model liquidity provision by HFTs and slower algo traders. For an excellent review of the theoretical as well as empirical 
literature on HFTs see Menkveld (2016). 

9See “Citadel Securities Cuts Almost 10% of Employees After Review”, Bloomberg News, March 6, 2013, and “Getco 
Discloses 90% 2012 Profit Decline As Knight Deal Tweaked”, The Wall Street Journal, April 15, 2013. 
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on how HFTs affect the various components of the price process and how the price process influences 

the behavior of HFTs. 

3 The Data 

We analyze audit-trail10, transaction level data that took place during the months of August 2010 in 

the September 2010 E-mini S&P 500 futures contract and August 2011 in the September 2011 E-mini 

S&P 500 futures contract (ticker ES). The E-mini S&P 500 futures contract is a fully electronic, cash-

settled contract traded on the Chicago Mercantile Exchange’s GLOBEX platform.11 Initially designed 

to appeal to small investors, this contract was introduced in September 1997 but soon became the 

most actively traded stock index futures contract in the world and the de facto reference contract for 

the S&P 500 index.12 

Contracts mature every quarter (March, June, September, and December) and cease trading on 

the third Friday of the expiration month.13 Liquidity typically concentrates on the front month, 

or nearby, contract. In August, the front month is the September contract, which is the contract 

month we analyze in what follows. We concentrate only on two months of data to avoid the possible 

distortions induced by the expiration of the contract and by any roll-over strategies to move positions 

to the next contract month. The data are collected by the CME and provided to us by the Commodity 

Futures Trading Commission (CFTC) as part of its market surveillance program. 

Each trade record contains a time stamp, a transaction type, the price, and the volume. The records 

also contain detailed information about counterparts’ IDs and traders’ IDs. We can therefore follow 

a trading account, using its unique identifier, throughout the sample period, and use counterparts’ 

IDs and traders’ IDs to uniquely identify counterparties. In addition, each trade record contains an 

aggressor flag which indicates which of the two parties to the transaction submitted a market order 

and took away liquidity from the electronic limit order book. The data is sequentially ordered, which 

provided the sequencing of transactions when several trades have the same time stamp. While the 

10The data is reported to the CFTC as part of its regulatory mandate. The dataset is proprietary. Steps described 
below have been taken to ensure the anonymity of the individual trading accounts. 

11See http://www.cmegroup.com/trading/equity-index/us-index/e-mini-sandp500 learn more.html. 
12In fact, Hasbrouck (2003) shows that E-mini exhibits the largest information share, accounting for 90% of the price 

discovery of the S&P 500 index. There are three main reasons for the success of the E-mini S&P 500. First, the small 
size (equal to a fifth of the regular S&P 500 futures contract) makes this contract more accessible to traders and investors 
who would like to gain exposure to large-cap U.S. stocks. Second, the E-mini contract is traded on an open electronic 
limit order book which is accessible by off-floor traders. Third, the speed of execution of the GLOBEX platform enhances 
price discovery and attracts HFTs, including statistical arbitrageurs who may be contemporaneously trading the spot 
underlying assets in New York in the form of S&P500 Depository Receipts (SPDRs). 

13Several papers analyze the E-mini S&P 500 index, including Easley et al. (2012), Baron et al. (2012), and Adamic 
et al. (2017). 
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market is trading on a 24-hour basis with only short interruptions,14 we analyze only transactions 

that occurred between 8:30 a.m. and 3:15 p.m. Central Standard Time. This is the time when the 

stocks in the underlying S&P 500 index are most actively traded in New York and elsewhere, and 

when liquidity concentrates as a result.15 Overall, we analyze 8.1 and 15.5 million E-mini regular 

transactions in August 2010 and August 2011, respectively.16 As a result of the high degree of trading 

activity evident in this market, it makes sense to sample time in different ways and check the results 

for robustness. We will sample in calendar time (n milliseconds), tick time (the amount of time it 

takes for the price to move by n ticks), volume time (the amount of time it takes for n contracts to 

be exchanged), and transaction time (the amount of time it takes for n transactions to be recorded). 

Table 1 reports the correspondence in the data between these different sampling mechanisms. 

Figure 1 shows the closing price and the two-scale realized volatility (an estimator of the annualized 

standard deviation) for the data. While August 2010 is a relatively quiet month with low volatility, 

August 2011 is characterized by high volatility levels. In particular, August 4, 5, 8, and 9, 2011 exhibit 

extremely high variability following the S&P downgrade of the US credit rating, reinforced by negative 

news concerning the European sovereign debt crisis. The DJIA went up and down by over 400 points 

four days in a row, something never experienced before. This contrast between the two months allows 

us to look for, among other things, any differences in the behavior of high frequency traders in different 

market conditions. Volatility signature plots are reported in Figure 2 in transaction, volume, tick, and 

calendar time; they are fairly typical of high frequency data. Volatility at each sampling frequency is 

computed as the average over the month of the daily volatilities, and standard errors are the sampling 

standard deviations over that month. The top panel reports the volatility signature plot in transaction 

time, the second panel in volume time, the third in tick time, and the fourth in calendar time. The 

figure adjusts the range of number of contracts and number of ticks so that they are similar to the 

range of time intervals we used in calendar time, from 100ms to 1mn for August 2011, and from 1s to 

1mn for August 2010. 

14Trading hours (in Central Time) are 5:00 p.m.-3:15 p.m. & 3:30 p.m.-4:30 p.m. Monday through Thursday, and 5:00 
p.m.-3:15 p.m. on Sundays. 

15The results of the analysis that follow are largely consistent when computed on the two alternative trading periods 
consisting of 8:00 a.m.-3:15 p.m. and the full trading day, respectively. 

16Not only is the size of each contract smaller than regular S&P 500 futures, but the median number of contract(s) 
exchanged in each transaction is 1. This was of course the idea behind the creation of the S&P 500 E-mini market — to 
allow small, infrequent traders access to S&P 500 futures. But this feature of the market is also beneficial to HFTs who 
need to be able to execute a large number of small trades to capture whatever tiny empirical advantage their algorithms 
target, relying on the law of large numbers for success. It is therefore not surprising that the E-mini has become one of 
their favorite markets to operate in. Consistent with this, there is a tendency in other markets for the volume exchanged 
on each transaction to go down: for example, Angel et al. (2015) document that the average trade size has been decreasing 
in US equity markets in recent years, down to about 300 shares in 2009, but it is still a far cry from the median trade 
size of 1 contract in our data. 
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3.1 Identifying the Cluster of High Frequency Traders 

Our first objective is to classify traders into two groups, high frequency traders (HFTs) and low 

frequency traders (LFTs). We expect HFTs to share specific characteristics: they generate a large 

number of transactions, executed at a very high speed, and carry low inventory levels.17 Hence, the 

features we employ to single out the HFTs are the number of trades and trade volume, as measures 

of trading activity (high), inter-trade duration (low), as a measure of the speed of execution, and 

inventory (low relative to volume traded). The unique characteristic of the data that makes this 

analysis possible is the fact that it contains unique account identifiers, so we can track all the trading 

done by a particular account over time. Of course, we do not report any results in the paper that 

would allow a specific firm’s trading strategy to be reverse-engineered. All the results we report are 

aggregated and we have taken further steps to anonymize the presentation of the results. 

To separate HFTs from LFTs in what is effectively a massive amount of data, we employ clustering 

analysis. Clustering analysis refers to the organization of points or patterns into clusters based on 

similar behavior: points or patterns within a cluster are more similar to each other than points or 

patterns belonging to a different cluster. The idea is to select HFTs as a specific cluster within the set 

of all traders, a cluster that becomes apparent, and fairly consistent over time, once we look in the four 

dimensions described above. Indeed, we find that a small subset of traders look markedly different 

from the others on these dimensions. We proceed as follows. For each trading account, we compute the 

following measures of trading activity: the number of transactions, the number of contracts traded, 

inventory, and (average) trade duration. We compute these measures at different sampling frequencies: 

50,000; 100,000; 200,000 transactions and the full day. The number of transactions and the number 

of contracts traded (trading volume) measure account-specific activity related to the specific decision 

horizon and the execution strategy of different traders. We expect HFTs to be characterized by a 

large number of both transactions and volume. Inventory measures the net position of each account 

over the relevant sample. High frequency traders should have a tiny net inventory position relative 

to their volume traded. Trade duration for a given account is defined as the time between trades for 

that account. The data is time stamped to the second in 2010 and to the millisecond in 2011. Often, 

for several accounts in our data, the median trade duration is equal to 0. Therefore, we adopt the 

arithmetic mean of trade duration, which does vary with traders, and we expect highly active, low 

latency traders to have lower mean duration. Taken together, the four measures considered appraise 

17The Sub-Committee on Automated and High Frequency Trading, part of the CFTC Technical Advisory Committee, 
provides the following definition: High frequency trading is a form of automated trading that employs: a) algorithms for 
decision making (without human intervention); b) low-latency technology; c) high speed connections to markets; and d) 
high message rates. 
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different aspects of how much, in which direction, and how quickly each trader transacts. We compute 

these measures of trading activity and cluster all variables each day and each month in the sample. 

Clustering analysis then formalizes statistically the separation of the full universe of traders into 

different groups. It employs a pattern proximity measure which quantifies the distance between pairs 

of patterns and then groups the data into clusters. There are two main approaches in grouping. The 

first approach is referred to as hierarchical and implies either that patterns are merged (agglomerative 

clustering) or split (divisive clustering) based on the proximity measure to form a hierarchy of clusters. 

The second approach is partitional clustering which is based on the identification of a partition of 

patterns that optimizes some clustering criterion. Figure 3 show the results of the clustering analysis 

for August 2010 and 2011.18 The different clustering methods produce consistent results, which 

are additionally consistent with what a simple visual partitioning of the data would suggest. We 

consistently identify a small number of traders who persistently stand out in the data as those having 

the highest account-specific daily trading volume, number of trades, lowest average trade duration, 

and lowest inventory: these same traders are identified as HFTs by all the clustering algorithms we 

employ. For confidentiality reasons, namely to avoid any potential reverse-engineering by an HFT of 

one of its competitors’ trading patterns or strategies, we are only stating that the number of traders 

identified as HFTs is between 5 and 15, and only report aggregate statistics on HFTs. By contrast, 

there are over 30, 000 and 35, 000 LFTs in the same sample in 2010 and 2011, respectively. 

In the two-dimensional plots, frequency (inverse of duration) is graphed against the average number 

of trades, daily volume, and daily inventory (inverse of inventory as a percentage of total daily volume) 

respectively; in the 3d plot, we include frequency (inverse of duration), number of trades, and inventory 

(inverse of inventory as percentage of total daily volume). Accounts we classify as LFTs are indicated 

as belonging in the blue shaded area, while the HFTs are indicated as belonging in the red shaded 

area; again, we do not report the positions of HFTs and LFTs individually, only the region in which 

they collectively lie in the graph. Accounts with fewer than 20 transactions per month were dismissed 

in the clustering analysis. We obviously classify these accounts as LFTs. To avoid cluttering the 

graphs to the point of illegibility, the plots only include LFTs with more than 1,000 transactions. 

Most but not all accounts we identify as HFTs overlap between the two months in the sample, 

indicating some limited degree of entry and exit of HFTs in this market, or perhaps some variation 

18Computations are done in Matlab. For robustness reasons, we adopt several clustering algorithms: the agglomerative 
hierarchical clustering which begins with each pattern in its own distinct cluster and clusters are then successively merged; 
k-means partitional clustering in which patterns are assigned to the cluster with the nearest mean (high proximity); 
Gaussian mixture partitional clustering in which patterns are assumed to be drawn from one of several distribution and 
patterns are assigned to the cluster with the nearest distribution; and the Plaid model introduced by Lazzeroni and 
Owen (2002) in biology to cluster genes by looking for patterns that deviate from average profiles. 
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in the trading strategies they follow over time. Not surprisingly, by employing a combination of 

criteria, our identification mechanism for HFTs is more conservative than what any single criterion 

would identify. For example, there are over 30 accounts that trade, on average, more than 5,000 times 

per day in August 2010 and August 2011, respectively. But some of these accounts do accumulate 

inventories and can be better classified as directional or fundamental traders. For instance, Figure 4 

displays the clusters for August 2010 based on the two measures of trading frequency and inventory: 

we can distinguish among HFTs (again only indicated as a red shaded area instead of individually), 

LFTs who are fundamental buyers accumulating long positions, LFTs who are fundamental sellers 

accumulating short positions (both likely institutional investors), and the residual mass of LFTs who 

trade relatively low volumes and do not accumulate much inventory. In the analysis that follows, we 

do not distinguish among these different types of LFTs. 

Table 2 reports the summary statistics for HFTs vs. LFTs and shows the stark differences between 

the two groups in terms of the four criteria we employed: HFTs are responsible for more than 100 times 

the number of trades of LFTs and 300 times their volume; HFTs have average intratrade durations 

below 1 second compared to about 10 minutes for LFTs and carry inventory that is about 10 times 

smaller than that of LFTs as a percentage of their trading volume. The “aggressor flag” in the data 

allows us to determine the identity of the traders who are liquidity-demanding vs. liquidity-supplying. 

According to the CME, the aggressor flag indicates whether the order that generates the trade is 

incoming or resting on the limit order book. Figure 5 shows that LFTs are slightly more likely than 

HFTs to prove liquidity over time. 

3.2 Classifying Transactions by the Type of Trader Involved: HH, HL, LH and 

LL 

We now exploit the unique characteristics of the dataset to classify each transaction. Each transaction 

in the data contains markers that identify the two counterparties (trading accounts) to the transaction. 

Thus, given our classification of each trading account as HFT or LFT, we proceed to classify each 

transaction as belonging to one of four categories: “HH” (a HFT buying from another HFT), “HL” 

(a HFT buying from a LFT), “LH” (a LFT buying from a HFT), or “LL” (a LFT buying from 

another LFT). These being futures contracts, there is no real “buyer” and “seller”. We call “buyer” 

the trader entering into the long position in the contract, and “seller” the counterparty entering into 

the short position. Note that this distinction is separate from the “aggressor” determination, which 

refers to the party taking away the liquidity by being responsible for the market order that led to the 

transaction, and could be either on the long or short side of the transaction. Most of the literature 
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mainly concentrates on the provision and supply of liquidity by HFTs. While we also look at this 

aspect of HFTs activity, our main focus is on which side of the market HFTs are in terms of long and 

short positions. 

Table 3 reports the summary statistics based on the four types of transactions. Many of the 

questions that will be analyzed in detail in following sections can be glanced at from a simple inspection 

of the descriptive statistics separated by type of transaction. In August 2010, the average trading 

activities are 61% for LL, 18% for both HL and LH, and 3% for HH. So of the 8.1 million transaction 

in August 2010 only 3% involve HFTs trading with HFTs, despite the fact that HFTs participate in 

about 40% of transactions. The majority of transactions are between LFTs. The percentage of trades 

between HFTs is 6% in August 2011. In terms of the immediate success rates of different transactions, 

we notice in Table 3 that after LFTs buy from HFTs, prices tend to drop. The opposite happens 

when LFTs sell to HFTs. The return standard deviation is highest when LFTs trade with each 

other (perhaps capturing an information effect). Trades between HFTs generate the lowest standard 

deviation (perhaps due to their careful avoidance of adverse selection). Statistics for absolute returns 

confirm that trades that involve LFTs exhibit the highest average volatility. Moreover, these trades 

also have the highest volatility of volatility. Absolute returns are persistent when LFTs are involved in 

a trade. This is not the case when HFTs trade with each other. In August 2010, the average trading 

volume is highest when HFTs trade with HFTs and lowest when LFTs trade with one another. In 

August 2011, the average trading volume is about 4 contracts for all types of transactions. The 

average duration and standard deviation of the duration are highest when HFTs trade with each other 

indicating that this type of trades does not occur very often. 

How Different Traders Respond to Characteristics of the Price 

Process 

We start with the premise that the price process X is an Itô semimartingale, which is the standard 

hypothesis in light of the fundamental theorem of asset pricing that restricts no-arbitrage prices to be 

semimartingales. That is, 

Z t Z t 
Xt = X0 + bsds + σsdWs + JUMPS (4.1) 

0 0 Z t Z Z t Z 
where JUMPS = x(µ − ν)(ds, dx) + xµ(ds, dx) (4.2) 

0 {|x|≤a} 0 {|x|>a} | {z } | {z } 
small jumps big jumps 
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Here, b denotes the drift process of X, σ its volatility process, W a Brownian motion, µ is the jump 

measure of X, and its predictable compensator (or Lévy measure) is ν (see, e.g., Aı̈t-Sahalia and Jacod 

(2014) for details on the model and its use in high frequency financial econometrics). The size cutoff 

a between small and big jumps is fixed. 

In this Section, we examine how changes in {b, σ, µ} affect the actions of the different types of 

traders we have identified. We rely on nonparametric estimates of these quantities as conditioning 

variables. Specifically, we ask the following questions: Are HFTs vs. LFTs more or less likely to trade 

when the drift is positive or negative, when the volatility process is higher, when the jump measure 

is higher? Do the different market environments represented by different values of {b, σ, µ} predict 

which type(s) of transaction among HH, HL, LH and LL are more likely to follow? Further, if market 

microstructure noise is present, so that the observed price is Yt = Xt + εt rather than Xt, are HFTs 

or LFTs more or less likely to trade when the noise is high? For each of the same price environments 

as above, are different types of traders more or less likely to provide/take liquidity? 

4.1 Drift: Response of Different Traders to Price Direction 

We start by examining whether HFTs and LFTs have different trading behaviors in response to recent 

price movements. Are either type more likely to be momentum traders or contrarian traders? For 

this purpose, we introduce some notation. Define a given interval, a day, say, as [τ , τ ]. Partition the 

interval in subintervals (buckets) τ = τ0 < τ1 < τ2 < ... < τm = τ . The length of the subinterval, 

k = τi − τi−1, is constant and τ may represent, transaction time, volume time, tick time or calendar 

time. We will often refer to the subintervals as “buckets.” For each subinterval, [τi−1, τi), we define 

trading activity of category j = {HH, HL, LH, LL} as 

X 
Ij,τ 

τ ∈[τi−1,ii) TAj,i = X X (4.3) 
Ij,τ 

j τ∈[τi−1,τi) 

where Ij,τ = 1 for j = js and zero otherwise. In other words, if j = HH, Ij,τ is equal to 1 for each trade 

between two HFTs in a given subinterval. The denominator is scaling the number of HH transactions 

by the total number of transactions in k. 19 The rate of return is computed as Ri = Yτi − Yτi−1 . We 

examine how TAj,i vary conditionally on the return Ri−1. We partition our data in subintervals of 

19In a similar way we define volume activity as X 
Ij,τ Vj,τ 

τ ∈[τi−1,τi ) 
V Aj,i = X X 

Ij,τ Vj,τ 
j τ ∈[τi−1,τi) 
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k = 1, 000 trades, which is the size where the return Ri−1 tends empirically to be most consistent 

within a bucket due to short run momentum. When k gets smaller, returns within that bucket cannot 

be reliably measured; if k gets too large, they become subject to mean reversion in prices and changes 

in returns within that bucket. 

Figure 620 shows the results of this analysis. We employ a nonparametric kernel regression for this 

purpose, to avoid imposing any prior parametric form to the shape of the relationship, and compare 

the conditional expected value of TAj,i to their unconditional values. Horizontal lines on the plot 

indicate the unconditional average trading activity for the four types of transactions. We find that, on 

average, HFTs are neither trend followers nor trend chasers. In fact, they buy or sell to LFTs at about 

the same rate following positive or negative returns. The only slight difference that is apparent is that 

HFTs tend to sell more to LFTs following large negative returns than to buy from LFTs, but that 

difference is small. Rather consistently, however, HFTs tend to trade less, both among themselves and 

with LFTs, following large returns of either sign: the proportion of LL trading increases sharply at 

both the left and right end of the graph, away from the unconditional mean. This shows that HFTs 

tend to (temporarily) withdraw from the market following periods of large absolute returns. While 

there are undoubtedly some HFTs who follow directional strategies that attempt to capture mean 

reversion following transitory pricing errors or momentum exploiting trends, this does not appear 

to be a dominant characteristic in our data. Instead, HFTs seem to prefer trading in quiet periods 

following small returns, with no particular directional component (i.e., no drift). Brogaard et al. 

(2014b) using NASDAQ data find that HFTs’ net positions are negatively correlated with past return, 

implying that HFTs follow contrarian strategies. While Brogaard et al. (2014b) compute HFTs’ net 

positions, in our analysis we keep the distinction between long and short positions for each trade (or 

bucket of trades). Moreover, our results suggest that the size of the previous return matters–i.e., 

HFTs’ behavior changes according to whether the price moves substantially or just a little. 

4.2 Volatility and Jumps: Response of Different Traders to Price Variability 

The previous results examined the propensity of HFTs to trade following periods of price drift. We 

now consider the relationship between trading activity by different types of traders conditional on 

past volatility and jumps. Figure 7 shows the results of this analysis. We again partition our sample 

in to subperiods (buckets) of k transactions and compute volatility within each bucket. Volatility is 

computed using the subsampled and averaged estimator RV avg of Zhang et al. (2005) with subsampling i 

where Vj,i represents the traded volume of each trade of category j in a given subinterval. All the analysis reported 
below has been conducted for both TAj,i and V Aj,i. Results are very similar and we only report results for TAj,i. 

20For some of the analysis, we omit results for August 2011 since they are very similar to those of August 2010. 
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grids of 100 transactions within each bucket. We set k = 10, 000 so that we can have an accurate 

21 estimate of RV avg for each bucket i. The plot reports a kernel regression of TAj,i on volatility in i 

bucket i − 1, that is RV avg , to be compared to the unconditional average trading activities marked by i−1 

horizontal lines. We find that trading activity involving two LFTs, TALL,i, is increasing in volatility, 

while the transactions involving at least one HFT are all decreasing. We denote by σ the average 

volatility (RV avg) across buckets for the entire month of August 2010 (or 2011). The plot indicates 

different integer levels of average volatility as vertical lines, and terms jumps buckets where |Ri−1| ≥ 3σ. 

Observations are marked individually to avoid relying on the kernel regression for rare observations. 

By looking at the extremes of Figure 6, we already saw that HFTs tended to trade less following 

periods of large absolute returns. The pattern that emerges from Figure 7 is consistent with that 

finding: HFTs shy away from periods of price variability, especially larger ones involving jumps. 

To measure the trading intensity of different traders following different levels of price jumps, we 

report in Table 4 the proportion of trades in bucket i following a price move of n ticks. In other words, 

we are computing TAj,i in tick time: when we observe a price change of n ticks, bucket i starts (τi) 

and ends when we observe the next change in price (which we convert in ticks). For larger price moves 

(larger n) we find that the proportion of LL transactions (TALL,i) increases. Looking at the longer 

horizon price impact of trading activity in bucket (i + k), k > 1, given a price move of n ticks in 

bucket i − 1, we find no evidence of a longer impact of the past price moves as a determinant of future 

trading intensity by different types of traders. On the other hand, if we look not at the average trading 

intensity in bucket i following a price move in bucket i − 1, but rather at the next trade immediately 

following a given price move, we find an even more marked result, reported in the right side of the 

same table: HH transactions are concentrated following price moves of 1 or 2 ticks, whereas almost all 

large price moves are followed by LL transactions. 

Taken together, these results show that HFTs appear predominantly to follow strategies that 

exploit small price movements rather than larger ones. In periods of market instability, LFTs see their 

share of the trading go up, with all the risks that entails, while the share of HFTs goes down. When 

volatility becomes extreme, as during the “flash crash”, a brief period of extreme market volatility 

on May 6, 2010, Kirilenko et al. (2017) and Easley et al. (2011) concluded that although HFTs did 

not trigger the crash, their response to the unusually large selling pressure on that day exacerbated 

market volatility. Brogaard et al. (2018) also find that HFTs do not trigger extreme price movements 

on NASDAQ stocks. 

21For each subperiod (bucket) i of length k = 10, 000 trades, we compute realized volatility sampling every w = 100 
trades. For each bucket we compute k/w measures of realized volatility and then we average them to obtain RV i 

avg for 
that specific bucket i (see Zhang et al. (2005)). 
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We looked so far at whether different types of traders were more likely to trade in different market 

conditions. We now look in Figure 8 at whether HFTs are more or less likely to provide vs. take 

liquidity in the same conditions. We again partition time in buckets (subperiods) of k = 10, 000 

transactions and compute the percentage of transactions in time bucket i where the aggressor (i.e., 

the taker of liquidity) is a LFT, 

X 
GLF T,τ 

τ∈[τi−1,ii) AggLF T,i = X X (4.4) 
Ij,τ 

j={HL,LH} τ ∈[τi−1,τi) 

where GLF T,τ is equal to 1 when a LFT is an aggressor. Obviously, this applies to HL and LH 

transactions only. We find that the provision of liquidity by HFTs is stable for most of the volatility 

environments, consistent with the unconditional time series evidence presented in Figure 5, but tends 

to decrease in extreme volatility (i.e., jumps) ones.22 

4.3 Response of Different Traders to Market Microstructure Noise 

We now examine the propensity of HFTs and LFTs to trade following episodes of high market mi-

crostructure noise. Negative first order autocorrelations of log-returns are symptomatic of market 

microstructure noise, since if observed transaction log-prices are Yτi = Xτi + ετi where X is the funda-

mental price in (4.1) expected to have uncorrelated increments by market efficiency arguments, and ε 

an i.i.d. noise component orthogonal to the X process, then observed log-returns R would follow the 

process 

Ri = Yτi − Yτi−1 = Xτi − Xτi−1 + ετi − ετi−1 . (4.5) 

Therefore the first-order autocorrelation ACF(1) of the observed market returns is expected to be 

negative in the presence of market microstructure noise, as 

Cov(Ri, Ri+1) = − Var(ετi ) < 0 (4.6) 

and Cov(Ri, Ri+j ) = 0 for j > 1. The MA(1) structure of returns is the basis for the likelihood 

correction for noise in Aı̈t-Sahalia et al. (2005). In this framework, ACF(1) closer to −1 is indicative 

of a higher level of noise (ε) relative to the signal (X). Pure bid-ask bounces are a particular example 

of this, with X nearly fixed and ε drawn from a binary distribution with values of ± half the spread. 

22Brogaard et al. (2018) document that when extreme price movements affect contemporaneously several stocks, HFTs 
do not supply liquidity. Brogaard et al. (2019) looking at messages submitted on recognized Canadian equity markets, 
show that HFTs’ behavior changes when volatility is high causing a reduction in the submission of limit orders and their 
contributions to price discovery. 
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Figure 9 reports trading activity, TAj,i, attributable to the four types of transactions, j = 

{HH, HL, LH, LL}, conditional on different levels of ACF(1) in the previous bucket, i − 1. We 

are sampling in tick time for this purpose since the autocorrelogram is most naturally defined in terms 

of price ticks. The length of the subperiods is k = 500 ticks. We find that HFTs trade more following 

periods where ACF(1) is close to −1, consistent with them trading more when the price is stuck in a 

corridor, doing not much other than bid ask bounces. In fact, a popular HFT trading strategy consists 

of capturing rebates offered by the exchanges to providers of liquidity; posting passive orders is always 

risky, but less so when these orders can be cancelled quickly and when the price does not move much. 

When the price actually moves, then the ACF(1) is higher (i.e., less negative or closer to 0) and we find 

that this is associated with higher LFT activity, as HFTs tend to shy away from markets that actually 

move, consistent with the evidence presented in Section 4.2. In other words, it appears that what an 

econometrician might call higher levels of market microstructure “noise” corresponds to more trading 

opportunities for the HFTs. From Panel B of Table 3, we see that only LL transactions lead to neg-

ative autocorrelation, as expected under (4.6). The other three types of transactions, each involving 

a HFT on at least one side, lead to positive first-order autocorrelations, indicating that they are not 

followed by much market microstructure noise. HH transactions lead to a near zero autocorrelation, 

suggesting no predictability – or as close to an even playing field as possible. HL and LH transactions 

lead to positive first order autocorrelation. As predicted, longer-lag auto-correlations are close to 0 

following all types of transactions, which is the expected result with or without noise, provided that 

the noise term is not autocorrelated itself.23 

5 How Characteristics of the Price Process Respond to Trading by 

High and Low Frequency Traders 

In the previous Section we examined how changes in {b, σ, µ} and the presence of noise affect the actions 

of the different types of traders we have identified. We now study the reverse causality: whether the 

shares of traders involved in a transaction (HH, HL, LH and LL) affects the future realizations of 

{b, σ, µ}, and whether they lead to different levels of market microstructure noise. 

23Our findings are in line with Brogaard et al. (2014b) who find that HFTs reduce price errors and Chaboud et al. 
(2014) who show that the provision of liquidity by HFTs in Forex markets reduces the autocorrelation of returns. Our 
results add to these findings by showing that HFTs trade more intensely when pricing errors are high to take full 
advantage of bid ask bounces. 
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5.1 Price Direction Response to Different Traders 

We saw above that HFTs tend to trade less (and LFTs more) following large returns of either sign. 

Is it also the case that transactions involving at least one HFT are less likely to be followed by large 

returns? The answer is yes: Figure 10 shows the results of kernel regressions relating returns in time 

bucket i to trading activity in time bucket i − 1, TAj,i−1 – equation (4.3). We employ non-overlapping 

buckets of k = 50 transactions to capture the immediate return following a transaction; these results 

are consistent to different choices of k within a reasonable range. We find that, on average, transactions 

involving at least one HFT are followed by a smaller absolute return than transactions involving two 

LFTs. In other words, HFT transactions have less market impact than those involving LFTs, and 

this effect holds controlling for the size of the transaction. Our results complement previous findings: 

Brogaard et al. (2014b) show that HFTs facilitate price efficiency and Brogaard et al. (2019) provide 

evidence that HFTs convey market information in to prices. Here we show that HFTs smooth the 

price process. In fact, when they trade more intensely the return process moves less. 

Next, we examine how often HFTs tend to “win” on average. For this purpose, we investigate 

whether transactions of the type HL (where the HFT holds the long position) are more likely to be 

followed by a price up-tick (i.e. the next price change is a price increase) and whether those of the 

type LH (where the HFT holds the short position) are more likely to be followed by a price down-tick 

(i.e. the next price change is a decrease in price). The top panels of Figure 11 show kernel density 

estimators of the probability of an up-tick following the four types of transactions. The answer is 

striking: transactions LL and HH are basically fair games, with density symmetrical around 1/2, while 

HL transactions lead to densities centered at about 2/3 and LH lead to densities centered at about 

1/3. In other words, when a HFT enters into a long position against a LFT, there is a 2/3 probability, 

on average, that the price will go up in the immediate future and vice versa when a HFT enters 

into a short position against a LFT. And these average winning probabilities are quite stable over 

time in the sample: the lower panels of Figure 11 show time series plots of the winning probability 

following the four types of transactions with confidence bands.24 Furthermore, HFTs tend to wait 

less on average before realizing the gain following a trade. Table 5 reports the up-tick and down-tick 

wait times conditional on the type of transaction for each month in transaction, volume, and calendar 

times. HL transactions are followed by the shortest wait times for an up-tick, and LH transactions 

are followed by the shortest wait times for a down-tick. These results are consistent across all three 

sampling mechanisms, transaction, volume, and calendar, and provide further evidence of the winning 

24In light of these results, it is perhaps not too surprising that Virtu, Inc., a major HFT firm, managed to report in 
its IPO S-1 Prospectus only one down day in four years of trading. 
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ability of HFTs beyond the winning probabilities reported above: not only do they win more often, 

but they wait less to see their win realized. 

One legitimate question then becomes whether these gains are simply compensation for risk, per-

haps hidden, that the HFTs would be somehow assuming in the process – the proverbial nickels picked 

up in front of a steamroller. While recognizing that our sample period is not long enough to show 

evidence of a potential peso problem, we find no evidence of rare disasters in the sample: Figure 12 

shows the distribution of losses conditional on a HFT losing money in an HL or LH transaction, which 

happens about 1/3 of the time. The figure shows that in over 99.95% of the cases the conditional loss 

is of only one tick with most of the few remaining ones consisting of losses of two ticks. 

These results suggest that HFTs find it profitable to trade with LFTs as opposed to trading with 

another HFT. How are HFTs able to avoid each other? One possibility might be that HFTs recognize 

their potential counterparty by using observable order characteristics. One such characteristic is the 

lot size. O’Hara et al. (2014) show that, on NASDAQ, HFTs are more likely to rely on odd lots, 

which helps hide their trading as odd lots do not appear in consolidated market data feeds and as 

such are not included in the TAQ database, for instance. Figure 13 shows the probability density of 

lot size for the different types of transactions. Unlike O’Hara et al. (2014), we find no evidence in 

this market of HFTs (or any other trader) systematically employing different trade sizes: in our data 

there are no statistically significant differences between the lot size in transactions involving HFTs or 

LFTs. Another possibility might be the type of order employed. Are HFTs more likely to be liquidity 

providers or liquidity takers? Figure 5 above showed that HFTs are slightly less likely to provide 

liquidity than to take it when trading with a LFT, but HFTs do not seem to privilege one type of 

order over another. 

Here is another way of quantifying the extent to which HFTs manage to avoid each other in 

transactions. Suppose that HFTs are involved in a percentage pH of the transactions and LFTs in 

pL = 1 − pH percent of the transactions in the sample. If the pairing between counterparties were 

random, we would expect the transactions pairings to satisfy pHH 
2 = pH , pLL = p2 

L and pHL = pLH = 

pH pL. The data in Table 3 tell us the empirical frequencies of the four types of transactions, pHH , 

pLL, pHL and pLH so we can compare the empirical distribution to the predictions if the allocation 

of counterparties were truly random. Inferring pH and pL from pHL = pLH = pH pL, we find that 

the empirical frequency pHH is lower than what p2 
H would suggest: pHH = 3% and p2 

H = 6% in 2010 

and pHH = 6% and p2 
H = 9% in 2011. So HFTs do not trade as much between themselves as purely 

random pairing would suggest. 

One possibility, discussed above, is that HFTs are somehow able to recognize each other’s orders 
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despite operating in an anonymous market. Another possible explanation is that HFTs are more 

likely to be trading on the same side of the market at each point in time, thereby limiting the possible 

transactions among themselves. To test this hypothesis, we compute the percentage of time that HFTs 

are on the same side of the market. We partition each day in time tick subsamples based on price 

changes (i.e., if the price of trade s does not move, that price belongs to subsample i, if the price 

moves, that price belongs to a new subsample, i + 1). Figure 16 shows the proportion of same-side 

trading for HFTs and LFTs for August 2010 and August 2011, respectively. This proportion is high 

– about 95% in August 2010 and 93% in August 2011. This suggests that HFTs are hunting like a 

pack, perhaps employing algorithms that are reacting to the same signals in the same way.25 

Finally, we look at whether the types of traders involved in a transaction are more likely to give rise 

to price momentum or mean reversion. Figure 14 reports the probability that the second tick is also 

an up-tick following the first up-tick. We find no evidence whatsoever of persistence of the direction 

taken by the first tick and in fact quite strong evidence of mean-reversion: given that the first tick is 

up, the second one is very likely to be down, and vice versa. In tick time, the first order autocorrelation 

is very strongly negative, of the order of −0.75. This is not to be confused with the autocorrelation 

indicative of market microstructure noise, which is based on calendar time or other forms of non-tick 

sampling. This strong evidence of mean-reversion in tick time suggests that there is indeed little room 

for error if HFTs are to capture the (small) gains associated with each transaction: it would likely 

necessitate a limit order at the next tick up following a buy, exploiting their latency advantage to 

insure their priority positioning at that place in the limit order book, or even a pre-positioning of that 

order. 

5.2 Price Variability Response to Different Traders 

We now examine how volatility and jumps respond to trading activity by high and low frequency 

traders. Figure 15 reports kernel regression estimates of the volatility and jumps of the returns 

process in trading bucket i conditional on the trading activity of the four types of transactions in 

bucket i − 1, TAj,i−1 – equation (4.3). 

The plot notes different integer levels of average volatility as horizontal lines, with jumps corre-

sponding by convention to returns larger than 3 times the average volatility in the data. Observations 

are again marked individually to avoid relying exclusively on the kernel regression for these relatively 

rare observations. We find that LFTs’ increased share of trading, on the whole, tends to precede large 

25Chaboud et al. (2014) also find that HFTs do not trade with each other as much as random matching would predict 
and interpret this result as evidence that HFTs’ trading strategies are less diverse than trading strategies used by LFTs. 
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price movements: when the share of LL trading increases beyond its average range, higher volatility 

and more jumps tend to follow. So we find that HFTs’s trading does not appear to be “causing” 

jumps in the sense that jumps do not disproportionately follow periods when their share of trading is 

higher, to the contrary. Our results confirm findings in Hasbrouck and Saar (2013) and Hagströmer 

and Nordèn (2013), among others. Most of the previous literature concentrates on the contemporane-

ous relation between HFTs’ activity and volatility levels while we condition on past trading activity 

and study whether a high (low) level of participation of HFTs at time i − 1 “causes” volatility in 

the next time period, i. Table 6 reports the distribution of the price impact of the different types of 

transactions: we find that most transactions with high price impact involve two LFTs. Similar results 

hold in transaction time over longer horizons, in volume time and in calendar time. For instance, in 

calendar time over 100 milliseconds, we see in the right side of the same table that the accumulation 

of mass in the tails of the price impact distribution is primarily due to LL transactions. 

These results do not mean that there is no potential for HFTs to be involved in, or even cause 

market incidents. Herding by HFTs provides a potential mechanism by which an a priori trivial market 

event could translate into a flash crash. Figure 16 indeed shows that HFTs have a high propensity to 

appear on the same side of the market at any given point in time. So even though HFT-participating 

transactions may not individually be predictive of jumps, herding by HFTs creates a risk, with liquidity 

potentially withdrawn by a large number of HFTs together if the circumstances warrant it from the 

point of view of their optimization algorithms. In terms of liquidity provision (equation (4.4)), we find 

in Figure 17 that higher volatility tends to follow a decreased provision of liquidity (i.e., an increased 

use of market orders) by HFTs. 

5.3 Noise Response to Different Traders 

Figure 18 shows different levels of negative first order autocorrelation of returns following different 

types of traders having transacted.26 We find that higher-than-normal levels of LL activity are followed 

by less negative autocorrelation. Negative autocorrelation levels following transactions involving at 

least one HFT are consistently high and do significantly vary in response to HFTs trading activity. 

6 Conclusions 

We systematically analyze the influence of the price process on the trading propensity of HFTs in the 

S&P500 E-mini market, and the reverse influence of their trading on the characteristics of the price 

26Trading activity, TAj,i is defined in equation 4.3. We are sampling in tick time since the autocorrelogram is most 
naturally defined in terms of price ticks. The length of the subperiods is k = 500 ticks. 
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process. We document that HFTs are not predominantly directional traders, but have a substantially 

higher than even chance of winning following each transaction when they trade against LFTs but not 

when they trade between one another. HFTs also appear to have devised mechanisms for avoiding 

trading with each other as often as their unconditional importance in the market would predict. 

Contrary to popular perception, we do not find that the trading propensity of HFTs induce volatility 

or price jumps. In fact, we find the opposite: it is their withdrawal from the market that leads to 

high volatility and jumps, whether the decrease of HFT trading intensity is intentional or exogenous. 

Conversely, we find that spikes in volatility and jumps cause HFTs to trade less intensely. This specific 

finding has important consequences for the resilience of the markets. Our results are largely consistent 

across the two samples of August 2010 and August 2011, which was characterized by high volatility. 

Given the large trading volume generated by HFTs, there have been concerns that their speed 

advantage may result in unfair competition and disruptive trading behaviors. HFT activity has at-

tracted regulatory attention.2728 Some European countries have either implemented or proposed to 

implement transaction taxes to discourage high-frequency trading activity. In addition, some trading 

venues have adopted rules in order to limit the speed advantage of HFTs. Aı̈t-Sahalia and Sağlam 

(2016a) find that most of these policies are unable to increase the provision of liquidity by high fre-

quency market makers when volatility is high. While HFTs generate increased activity and narrower 

spreads in normal times, the evidence presented in this paper suggests that they may reduce the re-

silience of the system as a whole during stressed times, possibly due to having displaced traditional 

market participants (such as, for example, major market-maker banks) who may have otherwise been 

an important stabilizing presence in volatile environments. 

27The Dodd-Frank Wall Street Reform and Consumer Protection Act called for an in depth study of HFT (Section 967 
(2)(D)). The CFTC and SEC have proposed to require more transparency from HFTs such as disclosing their algorithms 
to regulators in the event of severe market disruptions and requiring certain HFT broker-dealers to register with the 
Financial Industry Regulatory Authority (FINRA), which oversees broker-dealers. The SEC and CFTC have taken steps 
to bring some HFTs under closer scrutiny through enforcement actions. 

28For example, in 2016, the SEC announced settlements with Barclays and Credit Suisse over allegations that Barclays 
had misled its investors on HFT practices permitted on its private trading platforms, and that Credit Suisse failed to 
operate its trading systems as advertised. The CFTC has cracked down on spoofing, using the anti-spoofing authority 
granted in the Dodd-Frank Act in a number of recent enforcement actions involving algorithmic trading. 
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Baron, M., Brogaard, J. A., Hagströmer, B., Kirilenko, A., 2019. Risk and return in high frequency 

trading. Journal of Financial and Quantitative Analysis 54, 993–1024. 

Baron, M., Brogaard, J. A., Kirilenko, A., 2012. The trading profits of high frequency traders. Tech. 

rep., University of Washington Foster School of Business. 

Biais, B., Declerck, F., Moinas, S., 2016. Who supplies liquidity, how and when? Working paper 563, 

Bank of International Settlement. 

Biais, B., Woolley, P., 2011. High frequency trading. Tech. rep., Toulouse School of Economics and 

London School of Economics. 

Breckenfelder, J., 2019. Competition among high frequency traders, and market quality. Tech. rep., 

European Central Bank Working Paper. 

Brogaard, J. A., 2011. High frequency trading and volatility. Tech. rep., University of Washington. 
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Time 
Trans Vol 

August 2010 
Tick Cal Vol 

August 2011 
Tick Cal 

1 
10 
50 
100 

1,000 
10,000 

4 
41 
204 
407 

4,065 
40,076 

0.070 
0.671 
3.350 
6.701 
66.92 
663.1 

71 
709 

3,543 
7,086 

70,700 
693,630 

4.192 
41.91 
209.5 
419.0 
4,182 

41,399 

0.078 
0.776 
3.880 
7.759 
77.54 
772.7 

38.77 
387.7 
1,939 
3,878 
38,832 

391,740 

Vol 
1 
10 
50 
100 

1,000 
10,000 

Trans 
0.250 
2.439 
12.25 
24.57 
246.0 
2,495 

Tick 
0.018 
0.163 
0.821 
1.646 
16.46 
165.5 

Cal 
17.75 
172.9 
868.4 
1,741 

17,392 
173,079 

Trans 
0.239 
2.386 
11.93 
23.86 
239.1 
2,416 

Tick 
0.019 
0.185 
0.926 
1.852 
18.54 
186.6 

Cal 
9.249 
92.50 
462.6 
925.4 
9,287 

94,625 

Tick 
1 
10 
50 
100 

1,000 
10,000 

Trans 
14.29 
149.3 
746.3 
1,493 
14,943 
150,807 

Vol 
57.14 
611.9 
3,045 
6,075 
60,744 
604,373 

Cal 
1,014 

10,582 
52,881 

105,761 
1,056,485 

10,460,413 

Trans 
12.89 
128.9 
644.4 
1,289 

12,897 
129,421 

Vol 
54.02 
540.1 
2,700 
5,400 

53,930 
535,791 

Cal 
499.6 
4,996 

24,983 
49,973 

500,832 
5,069,952 

Cal 
1 
10 
50 
100 

1,000 
10,000 

Trans 
0.014 
0.141 
0.706 
1.411 
14.14 
144.2 

Vol 
0.056 
0.578 
2.879 
5.744 
57.50 
577.8 

Tick 
0.001 
0.009 
0.047 
0.095 
0.947 
9.560 

Trans 
0.026 
0.258 
1.290 
2.579 
25.75 
255.3 

Vol 
0.108 
1.081 
5.404 
10.81 
107.7 
1,057 

Tick 
0.002 
0.020 
0.100 
0.200 
1.997 
19.72 

Table 1: Relationship among transaction, contract, tick, and calendar time sampling in 
the data. 

Notes: the table translates the four different ways we measure time. “Trans” refers to the number of transactions, 
“Vol” indicates the number of contracts (volume), “Tick” denotes the number of price moves in ticks and “Cal” 
refers to number of milliseconds. 
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August 2010 August 2011 
LFTs HFTs LFTs HFTs 

Panel A: Number of Trades 
Mean 106 25,456 113 49,640 
Median 21 27,573 24 35,261 
St. Dev. 637 11,358 747 36,046 

Panel B: Volume 
Mean 462 109,133 498 202,500 
Median 63 103,883 59 207,379 
St. Dev. 2,457 93,005 3,262 56,302 

Panel C: Intertrade Duration (milliseconds) 
Mean 680,164 849 597,628 659 
Median 508,252 876 434,936 677 
St. Dev. 692,050 147 612,521 276 

Panel D: abs(Inventory) (%) 
Mean 16.73 0.0005 0.1908 0.0139 
Median 2.080 0.046 0.0743 0.0078 
St. Dev. 30.28 0.041 28.15 1.666 

Table 2: Summary Statistics: HFTs vs. LFTs. 

Notes: For each trading account we compute, at a daily frequency, number of trades, volume traded, average 
intertrade duration and end-of-day inventory as percentage of volume traded. LFTs refers to trading accounts 
which traded at least 10 times per day. 
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August 2010 August 2011 
LL HL LH HH LL HL LH HH 

Panel A: Number of Trades 
Mean (%) 61.14 17.71 17.89 3.233 52.78 20.62 20.31 6.283 
Mean 205,717 72,845 72,309 16,891 352,369 140,980 138,829 43,298 
Median 194,285 68,555 68,546 16,110 314,460 121,241 119,467 40,101 
St. Dev. 53,881 16,408 15,200 3,679 133,429 50,773 49,592 17,181 
Min 103,814 39,577 42,277 9,743 163,393 75,593 74,944 22,339 
Max 287,838 99,465 97,209 22,999 678,427 259,402 256,283 84,022 
Skew -0.401 -0.464 -0.321 -0.264 0.284 0.361 0.323 0.262 
Kurt 2.581 2.910 2.758 2.835 2.623 2.165 2.161 2.070 

Panel B: Log-Returns 
Mean 0.000 0.137 -0.134 0.001 -0.001 0.144 -0.140 0.000 
Median 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
St. Dev. 0.630 0.565 0.564 0.231 0.631 0.564 0.558 0.251 
Min -4.692 -2.350 -4.601 -2.343 -8.258 -4.323 -4.449 -4.139 
Max 4.774 4.655 2.391 2.336 8.512 6.593 4.318 4.157 
Skew 0.001 3.269 -3.263 0.339 -0.015 2.955 -2.941 -0.103 
Kurt 13.77 14.43 14.38 100.4 12.67 12.92 12.88 83.41 
ACF(1) (%) -16.10 22.39 22.98 1.896 -15.33 18.18 18.08 1.424 
ACF(2) (%) 1.842 18.21 18.26 1.653 0.990 12.06 11.53 0.620 
ACF(3) (%) 2.844 14.74 14.23 0.665 1.983 8.910 8.131 0.477 

Panel C: Absolute Log-Returns 
Mean 0.173 0.148 0.146 0.023 0.186 0.158 0.154 0.029 
Median 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
St. Dev. 0.606 0.563 0.562 0.229 0.604 0.561 0.555 0.249 
Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Max 4.774 4.655 4.601 2.343 8.512 6.657 5.976 4.231 
Skew 3.279 3.604 3.602 9.799 3.056 3.349 3.339 8.535 
Kurt 11.88 14.15 14.02 98.62 10.78 12.48 12.46 81.48 
ACF(1) (%) 25.66 24.46 24.99 2.700 22.72 19.66 19.13 1.855 
ACF(2) (%) 18.13 18.75 19.33 1.609 15.20 12.17 11.65 0.413 
ACF(3) (%) 15.27 15.11 15.71 1.399 11.99 8.950 8.336 0.591 

Panel D: Volume 
Mean 3.869 4.270 4.302 4.312 4.132 4.058 4.158 3.911 
Median 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
St. Dev. 10.94 12.77 13.03 10.91 10.73 10.42 10.44 10.98 
Min 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
Max 785 650 779 375 841 786 742 500 
Skew 1.685 1.756 1.776 1.772 1.415 1.554 1.571 1.733 
Kurt 5.475 5.914 6.029 6.127 4.487 5.052 5.142 6.284 

Panel E: Intertrade Duration (milliseconds) 
Mean 120.7 341.4 341.4 1,453 74.41 193.0 195.9 583.5 
Median 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
St. Dev. 653.2 2,058 2,003 7,282 366.8 907.8 936.5 2,722 

Table 3: Summary Statistics: Transactions by Type of Traders Involved. 
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Uptick 
Downtick 

LL HL LH HH 
Transaction Time: August 2010 
2,182 1,283 2,859 2,061 
1,809 2,594 1,077 1,773 

Uptick 
Downtick 

Transaction Time: August 2011 
2,257 1,536 2,867 2,130 
2,232 2,671 1,474 1,895 

Uptick 
Downtick 

Volume Time: August 2010 
8,466 4,958 11,138 7,957 
7,231 10,484 4,291 7,065 

Uptick 
Downtick 

Volume Time: August 2011 
9,167 6,273 11,803 8,737 
9,056 10,934 5,980 7,741 

Uptick 
Downtick 

Calendar Time (milliseconds): August 2010 
146,980 84,646 191,440 132,791 
135,688 197,700 79,158 131,636 

Uptick 
Downtick 

Calendar Time (milliseconds): August 2011 
81,758 55,384 109,489 83,144 
85,076 104,407 56,031 73,267 

Table 5: Uptick and downtick average wait in transaction, volume and calendar time. 

Notes: This table shows the average waiting time for an uptick and a downtick. 
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Figure 1: eMini Price and Two-Scale Realized Volatility 

Notes: This figure depicts price levels and realized volatility measures for the E-mini September 2010 contract in 
August 2010 and for the E-mini September 2011 contract in August 2011. We see that the two months provide 
contrasted market environments, with low (resp. high) volatility in August 2010 (resp. 2011) and a significant 
leverage effect in August 2011. 
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Figure 2: Volatility Signature Plots 

Notes: This figure depicts volatility signature plots in transaction time, volume time, tick time and calendar 
time. 
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Figure 4: Clustering Analysis: Trading Frequency and Inventory Held by Different Types of Traders, 
August 2010. 

Notes: This figure plots the clusters of traders identified using the two criteria of trading frequency and carried-
over inventory. LFTs are located in the blue shaded areas, with a distinction between fundamental buyers and 
fundamental sellers, while the red shaded area marks the cluster of HFTs, with no individual accounts indicated 
to preserve their anonymity. 
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Figure 5: Daily Provision of Liquidity 

Notes: This figure presents the daily average provision of liquidity which we determined using the aggressor 
flag. The aggressor flag indicates whether the order that generates the trade is incoming or resting on the limit 
order book. For example, if a high frequency trader is the aggressor in a trade, we consider this high frequency 
trader as the “taker” of liquidity. We only consider transactions HL and LH (high frequency trader buying from 
a low frequency trader and a low frequency trader buying from a high frequency trader). 
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Figure 6: Trading Activity Conditional on Past Returns 

Notes: This figure reports kernel smoothing regressions relating trading activity, TAj,i, at time i, (see equation 
(4.3)), to rate of returns (%) at time i−1. Time is partitioned in subintervals (buckets) τ = τ0 < τ1 < τ2 < ... < 
τm = τ . The length of the subinterval, k = τi − τi−1 = 1, 000 transactions. The rate of return is computed as 
Ri = Yτi − Yτi−1 . The plot also reports individual extremal values (defined as Ri ≥ ±1.5%): Circles (in green) 
refer to transactions between two low frequency traders (LL); asterisks (in red) refer to transactions between 
two high frequency traders (HH); dots (in blue) indicate transactions where a low frequency trader is buying 
from a high frequency trader (LH); crosses (in purple) indicate transactions where a high frequency trader is 
buying from a low frequency trader (HL). Horizontal lines indicate the unconditional average trading activity 
for the four types of transactions. 
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Figure 7: Trading Activity Conditional on Volatility and Jumps 

Notes: This figure contains kernel smoothing regressions relating trading activity, TAj,i, at time 6 i (see equation 
(4.3)), to volatility at time i − 1. Time is partitioned in subintervals (buckets) τ = τ0 < τ1 < τ2 < ... < τm = τ . 
For each bucket i of length k = 10, 000 trades, we compute realized volatility sampling every w = 100 trades. 
For each bucket we compute k/w measures of realized volatility and then we average them to obtain RV avg for i 
that specific bucket i (see Zhang et al. (2005)). σ refers to the average volatility (RV avg ) across buckets for 
the entire month of August 2010. Vertical lines indicate different integer levels of average volatility. The plot 
also reports jumps (defined as |Ri| ≥ 3σ): Circles (in green) refer to transactions between two low frequency 
traders (LL); asterisks (in red) refer to transactions between two high frequency traders (HH); dots (in blue) 
indicate transactions where a low frequency trader is buying from a high frequency trader (LH); crosses (in 
purple) indicate transactions where a high frequency trader is buying from a low frequency trader (HL). 
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Figure 8: Liquidity Provision by HFTs Conditional on Volatility and Jumps 

Notes: This figure reports a kernel smoothing regression relating liquidity provision by HFTs at time i (see 
equation (4.4)), to volatility and jumps at time i − 1. Time is partitioned in subintervals (buckets) τ = τ0 < 
τ1 < τ2 < ... < τm = τ . For each bucket i of length k = 10, 000 trades, we compute realized volatility sampling 
every w = 100 trades. For each bucket we compute k/w measures of realized volatility and then we average 
them to obtain RV avg for that specific bucket i (see Zhang et al. (2005)). σ refers to the average volatility i 
(RV avg) across buckets for the entire month of August 2010. Vertical lines indicate different integer levels of 
average volatility and jumps (defined as |Ri| ≥ 3σ). HFT Liquidity provision is computed as the percentage 
of transactions in time bucket i where the aggressor (i.e., the taker of liquidity) is a LFT. We only consider 
transactions HL and LH (high frequency trader buying from a low frequency trader and a low frequency trader 
buying from a high frequency trader). 
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Figure 9: Trading Activity Conditional on First Order Returns Autocorrelation 

Notes: This figure contains kernel smoothing regressions relating trading activity, TAj,i, at time i (see equation 
(4.3)), to first order autocorrelation of returns at time i − 1. Time is partitioned in subintervals (buckets) 
τ = τ0 < τ1 < τ2 < ... < τm = τ . For each bucket i of length k = 500 ticks, we compute ACF(1)i of the 
rate of returns within that bucket. Circles (in green) refer to transactions between two high frequency traders 
(HH); asterisks (in red) refer to transactions between two low frequency traders (LL); dots (in blue) indicate 
transactions where a low frequency trader is buying from a high frequency trader (LH); crosses (in purple) 
indicate transactions where a high frequency trader is buying from a low frequency trader (HL). 
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Figure 10: Returns Conditional on Trading Activity 

Notes: This figure reports kernel smoothing regressions relating returns (%) at time i to trading activity, TAj,i−1, 
at time i−1, (see equation (4.3)). Time is partitioned in subintervals (buckets) τ = τ0 < τ1 < τ2 < ... < τm = τ . 
The length of the subinterval, k = τi −τi−1 = 50 transactions. The rate of return is computed as Ri = Yτi −Yτi−1 . 
Vertical lines indicate the unconditional average trading activity for the four types of transactions. 
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Figure 12: Distribution of High Frequency Traders’ Losses 

Notes: This figure plots the distribution of losses of high frequency traders. 99.9% of losses occur at ±1-tick. 
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Figure 13: Distribution of Lot Size 

Notes: This figure presents kernel densities for the lot size by trading activity. 
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Figure 14: Probability that the Second Tick Will Be an Up-Tick, Given that the First One is an 
Up-Tick 

Notes: This figure depicts the time series that the second tick will be an up-tick conditionally on the first tick 
being an up-tick, following each of the four transaction types LL, HL, LH and HH for August 2010 and August 
2011. The plot shows strong evidence of mean-reversion in tick time. 
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Figure 15: Volatility and Jumps Conditional on Trading Activity 

Notes: This figure contains kernel smoothing regressions relating volatility at time i to trading activity, TAj,i−1, 
at time i − 1 (see equation (4.3)). Time is partitioned in subintervals (buckets) τ = τ0 < τ1 < τ2 < ... < τm = τ . 
For each bucket i of length k = 10, 000 trades, we compute realized volatility sampling every w = 100 trades. 
For each bucket we compute k/w measures of realized volatility and then we average them to obtain RV avg for i 
that specific bucket i (see Zhang et al. (2005)). σ refers to the average volatility (RV avg ) across buckets for the 
entire month of August 2010. Horizontal lines indicate different integer levels of average volatility. The plot also 
reports jumps (defined as |Ri| ≥ 3σ): Circles (in green) refer to transactions between two low frequency traders 
(LL); asterisks (in red) refer to transactions between two high frequency traders (HH); dots (in blue) indicate 
transactions where a low frequency trader is buying from a high frequency trader (LH); crosses (in purple) 
indicate transactions where a high frequency trader is buying from a low frequency trader (HL). Vertical lines 
indicate the unconditional average trading activity for the four types of transactions. 
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Figure 16: Same Side Trading by HFTs and LFTs 

Notes: This figure plots the percentage of trading activity done by HFTs and LFTs on the same side of the 
market, buying or selling. Time is partitioned in subintervals (buckets) τ = τ0 < τ1 < τ2 < ... < τm = τ . The 
length of each bucket i is k > 1 tick. We compute these percentages by counting the number of times HFTs 
and LFTs are respectively on the same side of the market within each tick-time bucket. 
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Figure 17: Volatility and Jumps Conditional on Provision of Liquidity by HFTs 

Notes: This figure reports a kernel smoothing regression relating volatility and jumps at time i to liquidity 
provision by HFTs at time i − 1 (see equation (4.4)). Time is partitioned in subintervals (buckets) τ = τ0 < 
τ1 < τ2 < ... < τm = τ . For each bucket i of length k = 10, 000 trades, we compute realized volatility sampling 
every w = 100 trades. For each bucket we compute k/w measures of realized volatility and then we average 
them to obtain RV avg for that specific bucket i (see Zhang et al. (2005)). σ refers to the average volatility i 
(RV avg) across buckets for the entire month of August 2010. Vertical lines indicate different integer levels of 
average volatility and jumps (defined as |Ri| ≥ 3σ). HFT Liquidity provision is computed as the percentage 
of transactions in time bucket i where the aggressor (i.e., the taker of liquidity) is a LFT. We only consider 
transactions HL and LH (high frequency trader buying from a low frequency trader and a low frequency trader 
buying from a high frequency trader). 
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Figure 18: First Order Returns Autocorrelation Conditional on Trading Activity 

Notes: This figure contains kernel smoothing regressions relating the first order autocorrelation at time i to 
trading activity TAj,i−1, at time i − 1 (see equation (4.3)). Time is partitioned in subintervals (buckets) 
τ = τ0 < τ1 < τ2 < ... < τm = τ . For each bucket i of length k = 500 ticks, we compute ACF(1)i of the 
rate of returns within that bucket. Circles (in green) refer to transactions between two high frequency traders 
(HH); asterisks (in red) refer to transactions between two low frequency traders (LL); dots (in blue) indicate 
transactions where a low frequency trader is buying from a high frequency trader (LH); crosses (in purple) 
indicate transactions where a high frequency trader is buying from a low frequency trader (HL). 
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